Upper Ocean Dynamics in the Tropical and South Atlantic from High Density XBT Lines AXXII and AX18

Gustavo J. Goni, Molly O. Baringer, Silvia Garzoli,

Qi Yao and Claudia Schmid

United States Department of Commerce

National Oceanic and Atmospheric Administration

Atlantic Oceanographic and Meteorological Laboratory

Miami, Florida, USA.

Gustavo.Goni@noaa.gov

Motivation

* 2(AX18) 4(AX08) Times a year * Every 40 km

- Investigation of the variability of zonal currents in the tropical Atlantic to aid in the study of the role of upper ocean dynamics on sea surface temperature.
- Meridional water mass transfer across the equator.
- Investigation of the meridional heat transport across 30-35S.

Historical XBT data along AX08

Figures by R. Molinari

AX08 and the major surface currents in the tropical Atlantic

Sea height variability

The first six transects in AX08

Sea height anomaly field

Temperature section

Dynamic height

Cumulative geostrophic transport

-20C

Profiling float deployment on AX08

- 15 profiling floats deployed in Dec 2000
- 40+ profiling floats deployed to this date

Salinity uncertainties & Dyn Heights

Will soon be improved, expanded

Current	December 2000		September 2001		January 2002	
	location	Sv	location	Sv	location	Sv
NEC	19.7-9.7°N	-23	19-13.1°N	-15	19.8-11.1°N	-22
NECC	7.2-4.9°N	25	9.7-5.6°N	22	9.3-7°N	16
nSEC	4.9-3.7°N	-20	5.6-3.2°N	-20	7-5.5°N	-14
NEUC	3.7-3.0°N	14	-	-	5.5-3.9°N	18
nSEC	3.0-1.7°N	-37	-	-	3.9-2.2°N	-30
eSEC	1.5-3.6°S	-36	1.7-4.3°S	-5	1.8-4.2°S	-13
SEUC	3.6-5.2°S	17	4.3-5.4°S	11	4.2-4.7°S	14
cSEC	5.2-6.8°S	-13	5.4-6.9°S	-11	4.7-8.0°S	-6
SECC	10-12.9°S	6	6.7-9.5°S	11	8.0-9.3°S	7
sSEC	12.9-19.9°S	-7	9.5-15.3°S	-10	9.3-20°S	-8

IMPROVEMENTS

- Intermediate to high density XBT deployment to Cape Town, underway
- •Include TSG, too problematic, expensive
- •Include XCTD, expensive, not included in current budget
- •Include deeper XBTs, to 2000 m deep, expensive, redesign of autolaunchers, not included in current budget
- •More profiling float data, depending on funding and interest

Current and Immediate future work

- * Obtain mean locations, transports, from monthly mean temperature sections.
- * Relationship between surface currents and sea height signature.
- * Investigate and (maybe) quantify the effect of waves in the synoptic temperature sections, the dynamic height and transport estimates.
- * Compare our results with estimates from drifters and CM in PIRATA mooring (33°W).
- * Compare our results with estimates obtained from numerical models.
- * Use these results to improve the methodology used to monitor surface currents in NRT from altimetry in CoastWatch.

The first three transects of AX18

The transects and the upper ocean dynamics

Cumulative geostrophic transports

ring C

20

Agulhas ring A

20°E

10°E

AX18 and the Meridional heat flux in the Atlantic Ocean

In the South Atlantic the meridional heat flux is uncertain, estimates vary between -0.4 and +0.9 PW.

To better understand the global ocean thermohaline circulation and its impact on climate it is necessary to reduce the heat flux uncertainty in the South Atlantic

Estimates of South Atlantic meridional heat flux near 30°S

Lat °S	Heat Flux PW	Method /	Source
32	0.66-0.88	Inverse	Fu (1981)
30	0.69	Sea-air fluxes	Hastenrath (1982)
32	0.16-0.68	Direct	Bennett (1978)
32.5	0.63	Numerical model	Donners
32	0.4	Direct	Bryan (1962)
30	0.39	Sea-air fluxes	Bunker (1980)
30	0.38	Sea-air fluxes	Hsiung (1985)
30	0.3	Inverse	Macdonald & Wunsch (1996)
			Ganachaud & Wunsch (2000)
30	0.29	Numerical model	Marchesiello et al. (1998)
30	0.26	Numerical model	Matano (pers. comm., 2003)
32	0.24	Inverse	Rintoul (1991)
30	0.22	Direct	McDonogh and King (2003)
30	0.19	Numerical model	Matano & Philander (1993)
30	- 0.23	Inverse	de las Heras & Schlitzer (1999)

The first two estimate of meridional heat flux

Data distribution

www.aoml.noaa.gov/phod/hdenxbt

Data distribution

AX08

Proposal (PDF format)

AX18

Current and Immediate future work

- Validate altimeter estimates of the transport of the Brazil and Agulhas currents.
- Validate altimeter estimates of the motion of the Brazil Current front.
- Continue with the estimates of meridional heat transport across 35°S.